Dear sir or madam:
I want to verify the pictures which used to train to a classifier can be classified to correct class. But the Sample test result is differenent to my C# program test result.
My Experiment below
I create a new Polimago Classification & Regression to make a pass and fail classifier.
First, I load image and create the pass and fail classes.
Second, I do the Create Classifier to train the classifier.
Third, I save the Polimago classifier file.
Forth, I do the Sample Test to check the training result.

After using TeachBench to make classifier, I use the Visual Studio 2019 C# to Load the classifier I trained and Load the pictures which used to train classifier. But the test result is different to I use Teach Bech Sample Test result.

I also try CVB tutorial Handwriting classifier USDigits6000.pcc. The result is also different, show below.

My C# Code
using Stemmer.Cvb;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Cvb;
using CVBImage = Cvb.Image;
using System.IO;
namespace WindowsFormsApp1
{
    public partial class Form1 : Form
    {
        private Cvb.SharedPolimagoClf theClassifier_;// The Polimago classifier to be used.
        string number = "1";
        string file_path_ = @"D:\test\1";
        string file_type_ = "*.bmp";
        int pass_count_ = 0;
        int fail_count_ = 0;
  
        public Form1()
        {
            InitializeComponent();
            LoadClassifier("USDigits6000.pcc");
            Classify();
        }
        private void LoadClassifier(string fileName)
        {
            try
            {
                Cvb.SharedPolimagoClf tmp = Cvb.Polimago.OpenClf(fileName);
                if (tmp != null)
                {
                    theClassifier_ = tmp;
                    Console.WriteLine("Loaded classifier '" + fileName + "'");
                }
            }
            catch (Exception e)
            {
                Console.WriteLine(e.ToString());
            }
        }
        private void Classify()
        {
            try
            {
                DirectoryInfo di = new DirectoryInfo(file_path_);
                foreach (var fi in di.EnumerateFiles(file_type_))
                {
                    Cvb.Image.IMG image = 0;
                    bool r = Cvb.Image.LoadImageFile(fi.FullName, out image);
                    Cvb.Image.IMG normalize_image = 0;
                    Cvb.Image.CreateNormalizedImage(image, CVBImage.TNormalizeMode.Normalize_MeanVariance, 128, 120, out normalize_image);
                    double quality;
                    string cls;
                    double[] confidences;
                    if (theClassifier_.Classify(normalize_image, 0, 0, out cls, out quality, out confidences))
                    {
                        if (cls == number)
                        {
                            pass_count_++;
                        }
                        else
                        {
                            string ng_message = fi.FullName + " ==> " + confidences[0].ToString() + " " + confidences[1].ToString();
                            Console.WriteLine(ng_message);
                            fail_count_++;
                        }
                    }
                }
                Console.WriteLine("Pass count : " + pass_count_.ToString());
                Console.WriteLine("Fail count : " + fail_count_.ToString());
   
            }
            catch (Exception e)
            {
                Console.WriteLine(e.ToString());
            }
        }
    }///////////////////////////////////////////
}
            
